Protein oxidation inhibits NO-mediated signaling pathway for synaptic plasticity.
نویسندگان
چکیده
Oxidative stress is a primary factor inducing brain dysfunction in aged animals. However, how oxidation affects brain function is not fully understood. Here we show that oxidation inhibits signaling pathways essential for synaptic plasticities in the cerebellum. We first revealed that nitric oxide (NO)-dependent plasticities at the parallel fiber-Purkinje cell synapse (PF synapse) were impaired in the cerebellar slices from aged mice, suggesting a possible inhibitory action of protein oxidation by endogenous reactive oxygen species. PF-synaptic plasticities were also blocked in the cerebellar slices from young mice preincubated with oxidizing agents or thiol blocker. Because the treatment of the slices with the oxidizing agent did not affect basic electrophysiological properties of excitatory postsynaptic current of PF (PF-EPSC) and did not occlude the synaptic plasticities, oxidation was revealed to specifically inhibit signaling pathways essential for PF-synaptic plasticities. Finally, biochemical analysis confirmed the idea that inhibitory action of protein oxidation on the PF-synaptic plasticities was mediated by impairment of nitric oxide-induced protein S-nitrosylation. Therefore, oxidation was revealed to inhibit the S-nitrosylation-dependent signaling pathway essential for synaptic plasticity in a "competitive" manner.
منابع مشابه
NAOSITE : Nagasaki University ' s Academic Output SITE
Oxidative stress is a primary factor inducing brain dysfunction in aged animals. However, how oxidation affects brain function is not fully understood. Here we show that oxidation inhibits signaling pathways essential for synaptic plasticities in the cerebellum. We first revealed that nitric oxide (NO)-dependent plasticities at parallel fiber–Purkinje cell synapse (PF synapse) were impaired in ...
متن کاملP18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملCdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hip...
متن کاملCerebellum and reelin under chronic treadmill exercise conditions in male rats
Reelin is an extracellular matrix neuroprotein which plays important roles during development and maturation of cerebellum. In the postnatal cerebellum, Reelin is synthesized by cerebellar granule cells and secreted to extracellular matrix. This secreted protein modulates adult synaptic function, neurotransmitter release and regulates plasticity. Exercise has beneficial effects on central nervo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of aging
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2012